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ABSTRACT
In this paper, the question of interest is estimating true demand
of a product at a given store location and time period in the re-
tail environment based on a single noisy and potentially censored
observation. To address this question, we introduce a framework
to make inference from multiple time series. Somewhat surpris-
ingly, we establish that the algorithm introduced for the purpose
of “matrix completion” can be used to solve the relevant inference
problem. Speci�cally, using the Universal Singular Value�reshold-
ing (USVT) algorithm [7], we show that our estimator is consistent:
the average mean squared error of the estimated average demand
with respect to the true average demand goes to 0 as the number
of store locations and time intervals increase to 1. We establish
naturally appealing properties of the resulting estimator both ana-
lytically as well as through a sequence of instructive simulations.
Using a real dataset in retail (Walmart), we argue for the practical
relevance of our approach. Various classical time series models can
be considered special cases of the framework introduced in this pa-
per. For this reason, we believe that this method may have broader
implications beyond the application considered in this work.
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1 INTRODUCTION
1.1 Background
Consider the problem of estimating the daily or weekly rate at
which umbrellas are sold at a speci�c location, say at the Walmart
store in Bentonville, Arkansas. To do so, we have one sample per
time unit across several stores, e.g. 4 and 3 umbrellas were sold in
the past two weeks at store A, 6 and 5 were sold at store B and so
on. �e problem is challenging because the observations can be
noisy, incomplete and censored. �e noise is due to random errors
in measurement or record-keeping (e.g. mismatch in inventory
records and physical stocks, transaction errors). �e data might
also be incomplete due to missed reporting or aggregations for
some days or weeks. Importantly, the data is censored because the
store might have stocked only 4 umbrellas during the past week and,
hence, observed 4 sales but there was no information to account
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for any customers who might have wished to purchase an umbrella
but could not do so due to the stock-out. �is is in contrast to
online (web) portals which tend to have good estimates of missed
demand due to their ability to view customer arrival during stock-
outs. Additionally, note that the true (uncensored) demand is likely
to change from week to week, further complicating our problem of
estimating it.
It has successfully been shown that ignoring censoring e�ects will
result in demand estimates that are biased lower than the true value
[26]. Furthermore, as one can intuitively expect, the lack of a com-
plete picture, i.e. censoring, can have a costly impact on inventory
planning exercises [8]. In [8], it is suggested that the impact of
a lack of complete visibility can be overcome using “intelligent
analytics”. In this paper, as an example of “intelligent analytics”, we
provide a simple inference algorithm to estimate the time varying
demand rate from e�ectively a single noisy, incomplete and cen-
sored observation across multiple locations. �e key enabler for
this is the utilization of information across a number of stores to
synthetically create “multiple observations” for a given time unit
and location to be�er estimate the time-varying demand rate.

1.2 Setup and Contributions
We consider a se�ing where a retailer has censored sales data for a
product or group of products across N store locations and T time
periods. Without loss of generality, we shall assume that N  T .
Let true demand at each location and for each time period be mod-
eled as an independent random variable with Poisson distribution1.
Speci�cally, let Yi j denote the true demand at store 1  i  N

at time 1  j  T with �i j = E[Yi j ] being the mean demand. In
matrix form, let Y = [Yi j ]iN ,jT and � = [�i j ]iN ,jT .
Let Ci j be the quantity of stock (or inventory) at store i  N

during time interval j  T . �erefore, the number of sales, Xi j =
min(Yi j ,Ci j ). �at is, Xi j represents the censored demand at store i
at time j . We letmi j = E[Xi j ]. Inmatrix form, letC = [Ci j ]iN ,jT ,
X = [Xi j ]iN ,jT andM = [mi j ]iN ,jT .
To model the situation where some stores might not have reported
any information at various time periods due to supply chain issues,
information mismanagement, etc., we consider a setup where each
Xi j is observed with probability p 2 (0,1] and not observed with
probability 1 � p, independently. Let Xp denote this partially ob-
servedmatrix of censored demand matrixX . �e goal is to estimate
� from Xp as accurately as possible.
To that end, if there is no structure in �, there is no hope to obtain
any meaningful estimate of � from Xp . For example, let p = 1,
let Ci j be very large (say, 1) for all i  N , j  T , and let each
�i j be arbitrarily chosen. �en e�ectively we are observing one
sample each of N ⇥T Poisson random variables that have nothing
to do with each other. Equivalently, for a given i, j , we are trying to
estimate mean �i j of a Poisson variable from one sample. Naturally,
that is a futile exercise.

1Our methodology will work for other distributions as well, provided that the inde-
pendence assumption is satis�ed.
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�erefore, to obtain a meaningful estimate, it is essential to impose
structure. In the context of retail, it makes sense that the average
demand at store i  N at time interval j  T depends on the store
as well as the time period itself. Formally, let �i j = h(�i ,� j ) where
�i and � j are latent or hidden features associated with the store
i and time j; and h is an arbitrary Lipschitz continuous function.
Arguably, this is a very generic model and seems to have enough
expressive power to capture reality well. In Section 8, we discuss
how various popular models for time series are special cases of this
setup.
As the main result of this work, we provide an estimation algorithm
for � using Xp such that the expected mean squared error (MSE),
with respect to �, in the estimate �̂ goes to 0 as N ! 1 as long as
p � N

� 2
d+2 , where d is the dimension of the space in which latent

features belong. See�eorem 4.3 for precise details.
Our estimation algorithm is a two step procedure: in the �rst step,
it produces an estimate M̂ ofM fromXp ; in the second, it produces
as estimate �̂ of � using M̂ and knowledge of C .
To produce M̂ using Xp , we utilize the Universal Singular Value
�resholding (USVT) algorithm by Cha�erjee [7]. E�ectively, the
algorithm computes the singular value decomposition (SVD) of
Xp ; truncates the decomposition by keeping only top few singular
vectors / values and multiplies it by an appropriate parameter. �e
choice of the number of top singular vectors / values to retain
is done universally based only on p and dimension of the matrix,
hence, universal singular value thresholding. To bound the expected
MSE (M̂ ), with respect toM , under the setup described earlier, we
provide a minor modi�cation of result established in [7] stated
through Lemma 5.4 and�eorem 5.5. For completeness, we provide
the proof for these results, which are direct adaptions from [7].
To produce �̂ from M̂ using knowledge ofC , we utilize analytic prop-
erties of the (truncated) Poisson distribution along with a natural
“bisection” algorithm. Using elementary calculations, we establish
that the expected MSE (�̂), with respect to �, is within constant
factor of the expected MSE (M̂), with respect to M ; the constant
primarily depends on C . �is constant factor gets close to 1 as the
entries in C increase; it becomes larger as entries in C decrease.
Intuitively, this makes sense – as the entries ofC increase, the e�ect
of censoring disappears and, hence, M becomes closer to �, and
vice versa.

1.3 Summary of Experiments
Synthetic Data. While our theorems provide useful bounds, we
conduct extensive synthetic experiments to understand the �ner
performance dependency of the estimation algorithm, not fully
explained by our theoretical results. As mentioned earlier, our key
result is the bound onMSE (�̂) in terms ofMSE (M̂ ). To understand
the behavior of this constant factor in the bound as a function
of censoring, we vary the degree of censoring and �nd that as
censoring decreases (equivalently, entries of C increase) the bound
decreases and vice versa. However, somewhat counter-intuitively,
as the entries in C increase, theMSE (M̂ ) increases. �is behavior
can be explained by realizing that as entries in C increase, the
“support” of random variables Yi j increases. We also note that the
bound remains una�ected by the size of the matrix, even though
the MSE (�̂) andMSE (M̂ ) themselves decrease.

Walmart Data. We utilized sales data published byWalmart on Kag-
gle [1] to conduct our experiments with the hope of understanding
the applicability as well as impact of our results in a practical set-
ting. �is dataset contains sales data for several departments across
45 store locations and 143 weeks (time periods). Clearly, we do not
have the knowledge of the ground truth in terms of the underlying
”generative model” like in the case of synthetic data. Further, we
do not have access to inventory information. We apply our method
based on the model described earlier.
To begin with, we wanted to �nd evidence in the data about validity
of structure across stores and time periods as considered in this
paper. If there is a meaningful structure that our algorithm exploits,
then we should �nd as the fraction, p, of observed data increases,
we should be able to reconstruct missing information with higher
accuracy. And we do �nd that.
Next, we wish to verify whether our model assumption the each
store and time period’s demand can be modeled as independent
(but di�erent) Poisson random variable makes sense. To that end,
we conduct the following experiment: for each store and time, we
�nd the mean parameter using our method. For Poisson, the mean
parameter tells us about the variance. If there is independence, then
we can determine the overall variance. Interestingly enough, this
”model based” variance estimation matches the overall empirical
variance! �is suggests that data is not contradicting our model
assumption.
It is important to note that the estimated censored demand is non-
trivially di�erent from the observation suggesting that there is
”learning” to be done from the data. �e average of the estimated
means are noticeably smaller than the empirical average suggest-
ing that there is non-trivial censoring happening in the data. Of
course, we could have explicitly veri�ed this if we had access to
the inventory information. Finally, it is easy to see that theM is a
lower bound to �; that is, M̂ is an estimation of a lower bound of
true demand.

1.4 Notations
We shall useR to denote all real values,R+ to denote strictly positive
real values, Z represents all integers, Z+ represent strictly positive
integers. For any A 2 Z+, [A] represents {1, . . . ,A}. For an a ⇥ b
real-valued matrix Q = [Qi j ], its Frobenius norm, denoted by

kQ kF , is given by kQ kF =
✓ Pa

i=1
Pb
j=1Q

2
i j

◆ 1
2 . �e nuclear norm

of Q , denoted by kQ k⇤, is de�ned as kQ k⇤ =
Pmin(a,b )
i=1 si , where

si , 1  i  min(a,b) are singular values of Q .
Given an a ⇥ b matrix Q , let Q̂ be a random matrix that is an
estimator ofQ . �en the error in this estimator, denoted as average
mean squared error, denoted asMSE (Q̂ ), is de�ned as

MSE (Q̂ ) =
1
ab

E
f
kQ � Q̂ k2F

g
. (1)

�e root mean squared error, denoted as RMSE (Q̂ ) is simply de�ned
as square-root ofMSE (Q̂ ), that is,

RMSE (Q̂ ) =
q
MSE (Q̂ ). (2)
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1.5 Organization
�e rest of this work is organized as follows: we review the relevant
domains of literature in Section 2. We describe the estimation
algorithm in Section 3. Subsequently, we present the main result
(Section 4) and the associated proofs (Section 5). Section 6 discusses
the experiments based on synthetic data. Section 7 discusses the
case-study using the Walmart sales data. Finally, Section 8 provides
discussion about the model of this work along with the directions
for future work.

2 RELATEDWORKS
Our work is closely related to three bodies of work: (censored)
demand estimation; matrix completion and estimation; modeling
multiple related time series using matrix factorization. We discuss
each next.

2.1 (Censored) Demand estimation
Estimating demand is a well-studied problem of interest across
several domains. It appears as a sub-problem in the inventory man-
agement problems such as the classical news-vendor problem. �e
distinction between sales and demand data are also well-established
in prior works and censoring of demand plays a central role in the
most widely studied inventory management problems (e.g. [5], [8],
[11]). In [26], the author shows that estimation methods that do
not take censoring in to account experience a low-bias problem. In
[8], the authors have successfully argued that a lack of visibility
(censoring) in the demand data can prove to be costly for inventory
planning and that “intelligent analytics” are a valid substitute for
the lack of visibility. As such, our work is an instance of “intelli-
gent analytics” to estimate true demand from noisy, censored and
missing data.
�ere are two major approaches to estimating true demand from
missing and censored data: Bayesian and data-driven non-parametric.
Non-parametric approaches to inferring hidden demand to help
with inventory planning have been popular. In a recent work of
this �avor non-parametric estimates are determined in an iid set-
ting under censoring [5]. �e underlying distribution of interest is
assumed to be independent and identically distributed e�ectively
allowing multiple observations of the same distribution and, hence,
this is a simpler method than ours. �e estimates are shown to be
asymptotically optimal in conjunction with a an inventory plan-
ning policy. In general, there is a long history of works where
the censored demand is estimated in conjunction with a optimal
decision-making policy. Works such as [6], [13], [14], [12], [19],
[15] solve the inventory management problems by sampling-based
policies under censored demand se�ings. However, these works
either consider the iid demand scenarios and then approximate the
demand distribution empirically to derive adaptive inventory level
decisions for each time step (e.g. [6], [13]), or they use techniques
such as stochastic approximations to solve optimization problems
for ”value” functions that do not rely on true demand estimates (e.g.
[14], [12], [19]). In [15], the authors use sample average approxima-
tions to learn the empirical distributions of demand. In these works,
in contrast to our approach, there is li�le a�empt to incorporate
other dimensions such as di�erent locations or products, to utilize

correlated demand e�ects which can result in be�er estimates. Fur-
thermore, stochastic approximations can be unstable and encounter
scaling problems [12] which is not the case for us since we use the
highly scalable matrix completion and factorization methods.
�e Bayesian approach, which is more relevant to our work, as-
sumes a prior probability distribution and computes the MLE es-
timators of the demand parameters. In [11], the author computes
the estimates of the parameter of interest for a Poisson demand
distribution and it can be considered an early-precursor to our work.
However, only one location (newsstand) across time is considered
with the parameter of interest assumed to be identical across time.
�e author of [18] extends this to the iid Normal case whichmay not
be a good approximation to the reality of sales/demand in the real-
world since the demand is non-negative valued and continuously
changes. �e author of [4] uses the Bayesian approach to estimate
unknown parameters with a known prior distribution chosen from
the natural conjugate family within an iid se�ing. Our approach
is less restrictive and only assumes the independence across time
and locations. In [3], the authors extend the Poisson MLE approach
to the se�ing with substitutes and infer the parameters of interest.
However, only a single location is studied. Other works such as [3],
[10] and [25] use the Expectation-Maximization approach to infer
hidden demand by modeling the demand distribution or customer
choice appropriately. In a related approach, the authors of [17]
use the multinomial logit model of customer choice for products
across di�erent stores and available brands, while the author of
[24] assumes that the demand vector for products at time t is a
multivariate normal in�uenced by several observable in�uencers.
�is work then uses the EM approach to learn the parameters of
interest. Our work assumes nothing about the customer choice and
uses other locations (stores) as the second dimension in addition to
time. In contrast to all of the above work, our work does not have
the limitation of assuming identical distribution across time and
allows for distributions to change across time as well as location.
Secondly, we use at most one observation per time and location
and use no additional product features or customer choice model
to garner additional (side) information. Our results naturally ex-
tend beyond the Poisson case; we use the Poisson distribution for
simplicity and ease of exposition. Lastly, we have provable results
about our simple, spectral algorithm unlike the EM algorithmwhich
is excellent procedure but with limited theoretical understanding.

2.2 Matrix completion and estimation.
In a nutshell, the primary conceptual contribution of this work is
to identify that the generic censored demand problem is equiva-
lent to the so-called ”Latent Variable Model” a la Aldous-Hoover
characterization of multi-dimensional exchangeable distributions
or what is also known as ”Graphons”. �is connection opens up
the possibility of using a minor extension of the result from [7] to
devise an estimation algorithm with provable performance guaran-
tees. In lieu of that, our estimation algorithm e�ectively becomes
an instance of “matrix completion and de-noising” based on partial,
noisy matrix data. For a detailed discussion on the evolution of
the matrix completion, see [7]; for various practical algorithmic
implementations, as an example, see [16] and references there in.
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2.3 Matrix factorization for multiple time
series.

A more recent approach, related closely to our work, is to use ma-
trix factorization to de-noise random e�ects and impute missing
information in the censored demand data across a line of products
and time. In a recent work [28], the authors factorize the matrix
of sales data across products and time. �e temporal dependen-
cies are explicitly modeled in an auto-regressive se�ing. However,
censoring and store location based dependencies are not explicitly
considered. As such, this matrix-factorization approach is a concep-
tual extension of online time series prediction with missing data in
an auto-regressive se�ing [2]. Considering the problem as that of
multiple (stacked) time series with correlations and dependencies
is relevant to our work and considered in previous works such as
[9], [20], [21], [27]. As such, [27] is a form of probabilistic ma-
trix factorization (collaborative �ltering with latent features) using
time as one dimension. Works in probabilistic matrix factorization
([22], [23]) are conceptually close to our work. In [22], for example,
Gaussian priors on the matrix are assumed across two dimensions.
However, the parameters of the priors are more restrictive than
what our approach allows. Our work considers time and locations
as the two dimensions of the matrix (for a given product or group
of products) but allows each location and time period to have its
own independent distributional parameter with no prior knowl-
edge of the parameter value. In that sense, our approach can be
regarded as a generalization of these approaches by being able to
capture any structure (in the parameters) across the two dimen-
sions of the matrix. Please see Section 8 for a discussion on these
generalizations.

3 ALGORITHM
We are given partial observations of the censored demand matrix,
Xp . We wish to produce an estimate �̂ of true average demand �.
We propose to do so in two steps: (1) Obtain an estimate of the
average censored demand, i.e. M̂ ofM = E[X ], and (2) extrapolate
M̂ to obtain �̂ using the knowledge of capacity matrix C .

Step 1. Obtaining M̂ . We apply the Universal Singular Value�resh-
olding (USVT) of [7] to Xp to obtain M̂ . For completeness, we
describe the USVT algorithm [7]:

(1) De�ne matrix Z = [zi j ]iN ,jT with

zi j =
8><>:
Xi j if it is observed in Xp

0 otherwise.
(3)

(2) Let Z =
PN
i=1 siui�

T
i be the singular value decomposition

of Z .
(3) Let p̂ be fraction of NT entries observed in Xp , i.e. empiri-

cal estimation of p based on number of entries observed.
(4) Let

S =
⇢
i : si � 2.02

q
Tp̂

�
. (4)

(5) De�ne

W =
1
p̂

X

i 2S
siui�

T
i . (5)

(6) Letwi j be the (i, j )th element ofW . De�ne

m̂i j =

8>>>><>>>>:

0 ifwi j < 0
Ci j ifwi j > Ci j

wi j otherwise.
(6)

Step 2. Obtaining �̂. We have access to M̂ , the estimate ofM where
the (i, j )th element m̂i j of M̂ is an estimate ofmi j = E[Xi j ], the
(i, j )th element of M , which is the average of truncated Poisson
random variable with mean �i j , truncated atCi j . From M̂ , we want
to produce �̂, an estimate of �, using knowledge of C , which is
known.
To that end, let us supposewe knowM exactly. �at is, we knowmi j
for each i  N , j  T . We also know Ci j . Nowmi j = f (�i j ,Ci j ),
where for precise de�nition of f , please refer to Section 5.1.1. As
argued in Lemma 5.1, for any given �xed Ci j � 1, the function f is
strictly monotonically increasing in �i j 2 R+. �erefore, a simple
iterative algorithm (this is also known as the Bisection algorithm in
literature) to �nd �i j is as follows:

(1) Initialize �U B
i j = 1,�LBi j = 0 and �1i j = 1.

(2) In iteration k � 1, letmk
i j = f (�ki j ,Ci j ). Ifm

k
i j > mi j then

update �U B
i j = �

k
i j . Ifm

k
i j < mi j , update �LBi j = �

k
i j . And,

�

k+1
i j =

8><>:
1
2
⇣
�

U B
i j + �

LB
i j

⌘
, if �U B

i j < 1
2�LBi j , if �U B

i j = 1.
(7)

(3) Stop iterating when |�U B
i j � �LBi j | is small enough and de-

clare estimate of �i j = 1
2
⇣
�

U B
i j + �

LB
i j

⌘
.

In reality, we do not knowmi j , but we know estimate for it, m̂i j .
�erefore, we use m̂i j in place ofmi j in the above algorithm. We
denote the resulting estimation of � by �̂.

4 MAIN RESULT
4.1 Operating assumptions
We note the key model assumptions before stating the main result.
Let Yi j be true demand at store i 2 [N ] at time j 2 [T ]. Yi j is
an independent random variable with Poisson distribution whose
mean is �i j . Each store i 2 [N ] has latent feature �i 2 �1 as-
sociated with it. Each time j 2 [T ] has latent feature � j 2 �2
associated with it. We shall assume that �1 and �2 are compact
sets in �nite dimensional Euclidian space. For concreteness and
simplicity, let us suppose �1 = �2 = [0,1]d for some �nite d � 1.
We assume that �i j = h(�i ,� j ), where h : [0,1]d ⇥ [0,1]d ! R+
is a Lipschitz function with Lipschitz constant L. Given these as-
sumptions, it immediately follows that there exists �

⇤ 2 R+ so that
sup� ,� 2[0,1]d h(� ,�) = �

⇤.
We assume that the inventory capacity,Ci j at store i 2 [N ] and time
j 2 [T ] is a random variable whose distribution is parametrized by
�i and � j . Speci�cally, P(Ci j = k ) = �k (�i ,� j ) with �k : [0,1]d ⇥
[0,1]d ! [0,1] is a Lipschitz function with Lipschitz constant Lk .
We assume that maximum capacity is bounded above by a universal
constant C⇤, i.e. Ci j  C

⇤ with probability 1 for all i 2 [N ], j 2 [T ].
With that said, we assume that all realized capacity values are
known. �is is a realistic assumption because most modern retailers
have equipped themselves with the ability to record and access
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precise inventory information. �e censored demand realized at
store i at time j is Xi j = min(Yi j ,Ci j ). Letmi j = E[Xi j ]. Each Xi j
is observed with probability p 2 (0,1], independently.

4.2 Statement of main result
�e main result is about the performance of the algorithm described
in Section 3 in terms of its ability to estimate �̂. As stated, the
algorithm has two estimation steps. �erefore, we state results
about the estimation error introduced in each step. Stitching them
together will lead to the main result.

Estimation Error in M̂ . We state a bound on MSE (M̂ ) induced by
the Step 1 (USVT) of the algorithm.

L���� 4.1. For a given � 2 (0,1), let p � N

�1+� . �en

MSE (M̂ )  c4
N

� 1
d+2
p
p

, (8)

where constant c4 depends on L� ,d,C
⇤ and � . L� is a Lipschitz

constant.

Estimation Error in �̂: using M̂ . We state a bound on the MSE (�̂)
induced by Step 2 of the algorithm.

L���� 4.2. For any i 2 [N ], j 2 [T ],

|�̂i j � �i j | 
|m̂i j �mi j |

P(Q  max(0,Ci j � 2))
, (9)

whereQ is Poisson random variable with parameter �̃i j = max(�i j , �̂i j ).

For any �̃i j , P(Q  max(0,Ci j �2)) � P(Q = 0) = exp(��̃i j ). Since
maxi j �i j  �

⇤, it follows that

|�̂i j � �i j |  exp(�⇤) |m̂i j �mi j | (10)

�at is,

MSE (�̂)  exp(2�⇤)MSE (M̂ ). (11)

Pu�ing It Together. From�eorems 4.1 and 4.2, we obtain the fol-
lowing result.

T������ 4.3. For a given � 2 (0,1), let p � N

�1+� . �en

MSE (�̂)  c5
N

� 1
d+2
p
p

, (12)

where constant c5 depends on L� ,d,C
⇤,�⇤ and � .

As an immediate consequence, as long as p � N

�2
d+2 , we have

MSE (�̂) ! 0 as N ! 1.

4.3 Implications
�eorem 4.3 captures the fact that with enough samples, as N ! 1,
the errors in both steps of the algorithm go to 0. It is the error in Step
2 that should be heavily a�ected by censoring. What is surprising
is that even when Ci j = 1 for all i 2 [N ], j 2 [T ], in the regime
mentioned above, error goes to 0! �at is, if e�ectively there is only
one product on the shelf, knowing whether it is purchased or not is
su�cient to estimate the entire demand rate!
As we pay closer a�ention to Lemma 4.2, we notice that asCi j ! 1,
the error in �̂i j converges to error in m̂i j . �at is, as censoring
reduces, the censoring induced error in the Step 2 of the algorithm

reduces – naturally, as one would expect. And vice versa. �is
expected qualitative behavior gives us con�dence in the fact that
the bounds on the estimation error are capturing �rst-order e�ects.

5 PROVING THE RESULT
5.1 Preliminaries
First we establish a few useful preliminary properties that will be
utilized in establishing the proof of our main result.

5.1.1 Mean of a truncated (censored) Poisson random variable.
Consider a Poisson random variable, sayQ such that E[Q] = �. For
any C � 1, let the truncation of Q at C be denoted as R, that is,

R = min(Q ,C ). (13)

Let

m ⌘ E[R]

=

C�1X

t=0
tP(R = t ) +CP(R = C )

=

C�1X

t=0
tP(Q = t ) +C

⇣ 1X

t=C
P(Q = t )

⌘

=

1X

t=0
tP(Q = t ) �

1X

t=C
(t �C )P(Q = t )

= E[Q] �
1X

t=C
(t �C )P(Q = t )

= � �
1X

t=C
(t �C ) exp(��)�

t

t !

⌘ f (�,C ). (14)

�at is,m = f (�,C ). �is function f satis�es the following useful
properties.

L���� 5.1. �e non-negative valued function f : R+ ⇥Z+ ! R+, as
de�ned in (14), satis�es the following: for any � 2 R+ and C 2 Z+,

@ f

@�
(�,C ) = P(Q  max(0,C � 2)). (15)

�erefore,

@ f

@�
(�,C )  1. (16)

P����. To start with, consider case when C = 1. �en,

f (�,1) = 1 � exp(��). (17)

In this case,

@ f

@�
(�,1) = exp(��) = P(Q  0). (18)

�erefore, when C = 1, for any � 2 R+, we have
@ f

@�
(�,1) = P(Q  max(0,C � 2)), (19)

where Q is Poisson random variable with parameter �.
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Now we consider scenario where C � 2. We start by deriving the
precise form of @f

@� (�,C ). To that end, we shall use the following
de�nition:

f (�,C ) =
C�1X

t=0
t exp(��) �

t

t !
+

1X

t=C
C exp(��) �

t

t !
. (20)

�erefore,

@ f

@�
(�,C ) =

C�1X

t=0

t exp(��)
t !

✓
t�

t�1 � �t
◆

+C

1X

t=C

exp(��)
t !

✓
t�

t�1 � �t
◆
. (21)

Consider the �rst term in (21):

C�1X

t=0

t exp(��)
t !

✓
t�

t�1 � �t
◆

= exp(��)
✓C�1X

t=1

t�

t�1

(t � 1)! �
C�1X

t=1

�

t

(t � 1)!
◆

= exp(��)
✓C�1X

t=1

(t � 1)�t�1
(t � 1)! +

C�1X

t=1

�

t�1

(t � 1)! �
C�1X

t=1

�

t

(t � 1)!
◆

= exp(��)
✓C�2X

t=1

�

t

(t � 1)! +
C�1X

t=1

�

t�1

(t � 1)! �
C�1X

t=1

�

t

(t � 1)!
◆

=
✓C�2X

t=0
exp(��) �

t

t !

◆
�
✓
exp(��) �

C�1

(C � 2)!
◆

= P(Q  C � 2) � exp(��) �

C�1

(C � 2)! , (22)

where Q is Poisson random variable with mean �.
Consider the second term in (21):

C

1X

t=C

exp(��)
t !

✓
t�

t�1 � �t
◆

= C exp(��)
✓ 1X

t=C

�

t�1

(t � 1)! �
�

t

t !

◆

= exp(��) �

C�1

(C � 2)! . (23)

Using (22) and (23) in (21), we obtain

@ f

@�
(�,C ) = P(Q  C � 2). (24)

From (19) and (24), we have that for all � 2 R+ and C 2 Z+,
@ f

@�
(�,C ) = P(Q  max(0,C � 2)), (25)

where Q is a Poisson random variable with parameter �. �is
completes the proof of Lemma. ⇤

5.1.2 Sensitivity analysis of � with respect to M . We state the
following result regarding sensitivity analysis of f �1 as de�ned in
(14).

L���� 5.2. Given �xed C 2 Z, let (m1,�1) and (m2,�2) be pairs of
means of truncated Poisson and Poisson random variables. �at is,
mk = f (�k ,C ) for k = 1,2 with f as de�ned in (14). �en,

|�1 � �2 | 
|m1 �m2 |

P(Q  max(0,C � 2)) , (26)

whereQ is Poisson random variable with parameter � = max(�1,�2).

P����. Without loss of generality, let us assume thatm1  m2 and
hence �1  �2. Given �xed C 2 Z, the function f maps � 2 R+ to
m 2 R+. Let � be the inverse of the map, i.e. inverse of f (�,C ) with
respect to �rst argument keeping second argument �xed. �erefore,
�(mk ) = �k for k = 1,2. We know that f is continuous, di�eren-
tiable and strictly monotonic over R+. �erefore, � is continuous
and di�erentiable as well. �en

|�1 � �2 | = |�(m1) � �(m2) |
= |�0(m) | |m1 �m2 |, (27)

where the above equality follows from the Mean-Value �eorem
with �

0(·) being the derivative of �, and m 2 (m1,m2). Since f

and � both are di�erentiable over R+, by elementary argument in
analysis, it follows that

|�0(m) | = 1
| f 0(�) | (28)

where � is such that f (�,C ) = m and f

0(�) = @f
@� (�,C ). Due to

monotonicity of f , it follows that � 2 (�1,�2). Using Lemma 5.1,
we obtain

|�1 � �2 | =
|m1 �m2 |

P(Q  max(0,C � 2)) , (29)

where Q is Poisson random variable with parameter � 2 (�1,�2). It
can be easily veri�ed that P(Q  max(0,C � 2)) is a monotonically
decreasing function of � for a �xedC . �erefore, for all � 2 (�1,�2),
it is bounded below by � = �2. �erefore, we conclude that

|�1 � �2 | 
|m1 �m2 |

P(Q  max(0,C � 2)) , (30)

whereQ is Poisson randomvariablewith parameter � = max(�1,�2).
�is completes the proof of Lemma 5.2. ⇤

5.1.3 Lipschitz property of M . Next we establish that, mi j =
E[Xi j ], the (i, j )th element ofM , is a Lipschitz function of the latent
features �i and � j associated with store i 2 [N ] and time j 2 [T ].

L���� 5.3. Let the assumptions stated in Section 4.1 hold. �en,
there exists a Lipschitz function� : [0,1]d ⇥ [0,1]d ! [0,C⇤] so that
mi j = � (�i ,� j ) for i 2 [N ], j 2 [T ].

P����. By de�nition,

mi j = E[Xi j ] = E[E[Xi j |Ci j ]]

=

C⇤X

k=1
E[Xi j |Ci j = k]P(Xi j = k ). (31)

Now given Ci j = k , E[Xi j |Ci j = k] is precisely f (�i j ,k ) where f

is de�ned in (14). By the assumptions of Section 4.1, �i j = h(�i ,� j )
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and P(Xi j = k ) = �k (�i ,� j ). �erefore,

mi j =
C⇤X

k=1
f (h(�i ,� j ),k ) �k (�i ,� j )

⌘ � (�i ,� j ). (32)

Next, we establish that � is a Lipschitz function. To that end, by
Lemma 5.1, f (·,k ) is a Lipschitz function with Lipschitz constant
1 in it’s �rst argument for all k � 1. By assumption of Section 4.1,
h is a Lipschitz function with constant L. �erefore, for a �xed
k , f (h(�i ,� j ),k ) is a Lipschitz function of (�i ,� j ) with Lipschitz
constant L.
By the assumptions of Section 4.1, �k is a Lipschitz function with
constant Lk for 1  k  C

⇤.
�e following are easy to verify compositional rules associated with
Lipschitz functions:

(1) If �1 and �2 are Lipschitz functions with constants z1 and
z2, respectively, then �3 = �1 + �2 is a Lipschitz function
with Lipschitz constant z3 = z1 + z2.

(2) �1 and �2 are Lipschitz functions with constants z1 and z2,
then�3 = �1⇥�2 is also a Lipschitz function with Lipschitz
constant z1 |�2 |1 + z2 |�1 |1.

Note that | f (·,k ) |  k and k  C

⇤, that is, | f (·,k ) |1  C

⇤; and
by de�nition |�k |1  1. �erefore, by pu�ing all of the above
discussion together, we obtain that � is a Lipschitz continuous
function with Lipschitz constant L� , where

L�  C

⇤
✓
L +

C⇤X

k=1
Lk

◆
. (33)

�is completes the proof of Lemma 5.3. ⇤

5.1.4 Bounding kM k⇤. We shall utilize the Lipschitz property
ofM established in Lemma 5.3 to bound the nuclear norm of kM k⇤
as stated in Lemma 5.4 below. �e proof of the Lemma below is a
straightforward adaption of the arguments from [7, Lemma 3.6].
We present them here for completeness.

L���� 5.4. ForM as de�ned above, for all small enough � > 0,

kM k⇤  �N

p
T + �(L� ,d,C

⇤)
p
NT�

�d , (34)

where �(L� ,d,C⇤) is a constant that depends on Lipschitz constant
L� of� as de�ned in (33), dimension of the feature space d and the
constant C⇤ = k� k1.

P����. By Lemma 5.3, the (i, j )th element of M ,mi j = � (�i ,� j )

where � is Lipschitz in its arguments and � : [0,1]d ⇥ [0,1]d !
[0,C⇤]. For any given � > 0, it is easy to see that one can �nd a �nite
partition P1 (� ) and P2 (� ) of [0,1]d so that for any � ,� 2 [0,1]d ,
there exists � 0 2 P1 (� ) and �

0 2 P2 (� ) so that

|� (� ,�) �� (� 0,� 0) |  � . (35)

For example, let � =
j 2dL�

�

k
and de�ne P1 (� ) = P2 (� ) = P (� ),

where

P (� ) = {(k1/� , . . . ,kd/� ) : k1, . . . ,kd 2 [� ]}. (36)

�en, for any � ,� 2 [0,1]d , we can �nd � 0,� 0 2 P (� ) so that

k (� ,�) � (� 0,� 0)k2  k (� ,�) � (� 0,� 0)k1 
2d
�

 �

L�
. (37)

�erefore, by Lipschitz property of � , we have that |� (� ,�) �
� (� 0,� 0) |  � as desired. In this construction, we have

|P (� ) | ⇠ �

d  �1 (d,L� )�
�d , (38)

where �1 (d,L� ) is a constant dependent on d and L� .
For latent feature �i corresponding to store i 2 [N ], �nd closest
element in P (� ), and let it denote by p1 (�i ). Similarity, for latent
feature � j corresponding to time j 2 [T ], �nd closest element in
P (� ), and let it denote by p2 (� j ). Create matrix B = [bi j ] where
bi j = � (p1 (�i ),p2 (� j )). As argued above, we have that for all
i 2 [N ], j 2 [T ]

|mi j � bi j |  � . (39)

�erefore,

kM � BkF  �

p
NT . (40)

�is gives us

kM k⇤  kM � Bk⇤ + kBk⇤

p
N kM � BkF + kBk⇤

 �N

p
T + kBk⇤. (41)

In above, we used the inequality that for any real-valued matrix Q ,
kQ k⇤ 

p
rank(Q )kQ kF . We shall use the same inequality again

to bound kBk⇤. To obtain a tight bound, let us argue that the rank
of B does not scale with N and T . To that end, consider any two
columns, say j, j 0 2 [T ]. If p2 (� j ) = p2 (� j0 ), then it follows that the
columns j and j 0 of B are identical. �at is, there are can be at most
|P (� ) | distinct columns of B. Similarly, there can be at most |P (� ) |
distinct rows of B. �at is, rank(B)  |P (� ) |. Finally, we know that
k� k1  C

⇤. �erefore, we have

kBk⇤ 
p
|P (� ) |kBkF 

p
|P (� ) |

p
NT k� k1


p
|P (� ) |

p
NTC

⇤. (42)

Pu�ing everything together, we have

kM k⇤  �N

p
T +C⇤

q
�1 (L� ,d )

p
NT�

�d . (43)

�e proof is complete by realizing that �(L� ,d,C⇤) = C⇤
q
�1 (L� ,d ).

⇤

An immediate implication of the above Lemma is that by selecting
� = N

� 1
d+2 , we obtain

kM k⇤ 
⇣
1 + �(L� ,d,C

⇤)
⌘ p

TN

1� 1
d+2 . (44)

5.2 Key Enabler
We state the key enabler [7, �eorem 2.1]. We state it here for non-
normalized setup as described below and applicable to our se�ing.
Consider anm ⇥ n matrix A = [Ai j ] of interest. Let Ai j 2 [�B,B]
for all i 2 [m], j 2 [n] for some B � 1. Letm  n. Let Z = [Zi j ] be
anm ⇥ n random matrix whose entries are independent such that
E[Zi j ] = Ai j andZi j 2 [�B,B] with probability 1. Each entry of the
matrix Z is observed independently with probability p 2 [0,1] and
unobserved with probability 1 � p. �e Universal Singular Value
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�resholding (USVT) algorithm as described in Section 3 when
applied to Z produces an estimation matrix Â. �e expected mean
squared error is de�ned as

MSE (Â) =
1
mn

E
f
kÂ �Ak2F

g
. (45)

�en, as claimed and proved in [7],

T������ 5.5 (T������ 2.1 �� [7]). Let there be a given � > 0.
Suppose p � n

�1+� . �en

MSE (Â)  � min
⇢
B

kAk⇤
m

p
np

+
B

2

np

,
kAk2⇤
mn

,B2
�
+ B2� (� ) exp(��np),

(46)

where � and � are universal constants while � (� ) depends on � .

5.3 Proof of Lemmas 4.1 and 4.2,�eorem 4.3
Proof of Lemma 4.1. �e application of �eorem 5.5 (where A isM ,
B = C

⇤,m = N and n = T ), we �nd that as long as p � N

�1+� �
T

�1+� for any 0 < � < 1, for N large enough, the Step 1 of our
algorithm described in Section 3 produces M̂ so that

MSE (M̂ )  �

✓
C

⇤kM k⇤
N

p
Tp

+
(C⇤)2

Tp

◆
+ (C⇤)2� (� ) exp(��Tp), (47)

By plugging in bound from (44) and using T � N , we obtain

MSE (M̂ )  c1
N

� 1
d+2
p
p

+
c2
Tp

+ c3 exp(�N � ). (48)

In above, constants c1,c2,c3 may depend on L� ,d,C⇤, � and � . Since
p � N

�1+� , the �rst term on the right is the dominant as N scales,
leading to

MSE (M̂ )  c4
N

� 1
d+2
p
p

, (49)

where constant c4 may depend on L� ,d,C
⇤ and � .

Proof of Lemma 4.2. Lemma 4.2 follows immediately from Lemma
5.2.

Proof of�eorem 4.3. �e proof of�eorem 4.3 follows immediately
by pu�ing together Lemma 4.1 and implication (11) of Lemma 4.2.

6 SIMULATED EXPERIMENTS
6.1 Experimental Setup
We conduct simulated experiments to establish the various proper-
ties of the estimates M̂ and �̂. We consider the following metrics of
evaluation: RMSE (M̂ ),RMSE (�̂) and the Ratio: RMSE (�̂)

RMSE (M̂ )
. �is last

quantity, Ratio, helps establish the relationship between RMSE (�̂)
and RMSE (M̂ ) to con�rm the various implications of Lemma 4.2
and�eorem 4.3, as discussed in Section 4.3.
For our experiments, �i and � j are randomly sampled from a U(1)
uniform distribution for all 1  i  N ,1  j  T , unless noted
otherwise. �e (hidden, unknown) parameters of interest, �i j are
determined using the following Lipschitz function:

�i j = h(�i ,� j )

= �
exp{��i�� j���i � j }

Note that � 2 (0,1) is random but �xed constant. � is a scaling
constant used to generate as large values as needed for a simulation.
�e stocking level realizations of Ci j are known for all 1  i 
N ,1  j  T . �e random, but unknown, matrix of true demand
values is sampled as Yi j ⇠ Poisson(�i j ) for all 1  i  N ,1  j  T .
Each demand realization is then subject to censoring using the
stocking level constants Ci j . �is gives us the matrix X . We �x the
probability of observation, p. Using that, we observe each entry of
the matrix X independently with probability p giving us the matrix
X

p . We then estimate the censored means and (hidden) original
parameters using the algorithm described in Section 3.
�e simulation experiments are designed to help explore various
properties of the results stated in Section 4. We would like the
simulations to reveal how our evaluation metrics are a�ected by
the amounts of censoring. As discussed in Section 4.3, we expect the
Ratio to decay to a value of 1 as the degree of censoring reduces, and
be increasingly greater than 1 as censoring increases. Additionally,
we expect that as the probability of observation, p, is increased
the estimates improve. We also expect to con�rm the consistency
property of both RMSE (M̂ ) and RMSE (�̂). Finally, we would also
like to study the impact of structure on the estimates. We intuitively
expect that the more structure there is to exploit, the be�er the
estimates will be.

6.2 E�ects of Censoring and Probability of
Observation

�is set of simulated experiments are designed to show the e�ect
of censoring on the Ratio: RMSE (�̂)

RMSE (M̂ )
and RMSE(M̂) and how they

vary across di�erent levels of p. �e parameter scaling constant,
� = 15. To illustrate the e�ects of censoring clearly, all Ci j are kept
the same for each experiment and denoted by C . For this set of
experiments we used a matrix size of 10,000.
Figure 1 shows that as the censoring levels decrease, i.e. C increases,
the Ratio decreases and plateaus out to equal 1 for all values of p
used. At higher levels of censoring, i.e. C is smaller, the Ratio is
larger, as expected. �is behavior holds across all values of p.
Figure 2, shows that di�erent levels of p result in quantitatively
di�erent pro�les of RMSE (M̂ ). �e higher the value of p, the lower
the RMSE (M̂ )), as we would expect. Also we note that RMSE (M̂ )
increases as censoring decreases. �is makes sense becausemi j are
the censored means and censoring reduces the range of possible
values (support) ofmi j . �erefore, it makes sense that theRMSE (M̂ )
is smaller in situations of increased censoring.

6.3 Consistency of Estimates: M̂ and �̂
For this series of simulations, we used the scaling constant � = 5. In
order to study the e�ect of the levels of censoring we vary it across
experiments but keep all Ci j constant within each experiment. We
explore three levels of censoring: signi�cant (C = 2),mild (C = 5)
and little(C = 10).
Figures 3 and 4 show the results of this set of experiments. As
expected, we note that RMSE (M̂ ) and RMSE (�̂) both decrease as
the size of the matrix increases. As claimed in Section 4.3, RMSE (�)
is consistently smaller when the levels of censoring are smaller
(higher C values). Note that the e�ect is exactly the opposite for
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Figure 1: �e e�ect of decreasing censoring (varying C) on
the Ratio for di�erent levels of p. � = 15.

Figure 2: �e e�ect of descreasing censoring (varying C) on
the RMSE(M̂) for di�erent levels of p. � = 15.

RMSE (M ), as argued in Section 6.2. However, as the matrix size
increases, RMSE (M ) decreases for all levels of censoring.
Figure 5 shows that the Ratio is lowest when there is li�le censoring
(⇡ 1) and increases in the presence of increased censoring. However,
the size of the matrix appears to have minimal impact on the Ratio
for a �xed level of censoring. �is is an appealing property of the
Ratio because both RMSE (M̂ ) and RMSE (�̂) do get a�ected by the
size of the matrix. However, their ratio does not indicating that the
changes in RMSE (M̂ ) and RMSE (�̂) are correlated.

6.4 E�ects of range of values of Ci j
Our simulations, thus far, have assumed a constant value for allCi j
to illustrate the e�ects of censoring. However, each location i and
time period j can experience varying levels of censoring. To study
the e�ects of censoring across ranges of of values, we assign values
of stock levels to eachCi j within a range. We vary the range across
individual experiments to study the e�ect on the Ratio. We expect
that the larger the range, given the same upper limit, the larger the
Ratio to be.
Figure 6 con�rms our intuitive expectations. We have � = 15. Just
like previously argued, for the constant values of Ci j8i, j, we see a
drop in Ratio as the censoring e�ect is reduced. More interestingly,
across each set of ranges of the values of Ci j , the Ratio is highest
when more variation is allowed and drops down when the range

Figure 3: E�ect of increasing the size of the matrix on the
RMSE(M̂ ). �e di�erent plots represent di�erent levels of
censoring. � = 5. �e three levels of censoring are: little
(C = 10), mild (C = 5) and signi�cant (C = 2).

Figure 4: E�ect of increasing the size of the matrix, Xp , on
the RMSE(�̂). �e di�erent plots represent di�erent levels
of censoring. � = 5. �e three levels of censoring are: little
(C = 10), mild (C = 5) and signi�cant (C = 2).

Figure 5: E�ect of increasing the size of the matrix, Xp , on
the Ratio: RMSE (�̂)

RMSE (M̂ )
. �e di�erent plots represent di�erent

levels of censoring. � = 5. �e three levels of censoring are:
little (C = 10), mild (C = 5) and signi�cant (C = 2).

becomes a constant. �is helps us anticipate that if we know the
stocking levels vary greatly across locations and time then we can
expect a loss of precision in estimating the true parameters, as one
might expect. In other words, more structure, i.e. constant Ci j ,8i, j,
leads to more precise estimates.
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Figure 6: Ratio vs various sets of values of Ci j . We have � =

15. �e ranges of values ofCi j are grouped in four sets. Each
set is colored di�erently. For instance, the red dots indicate
Ci j values in the ranges 15 � 25, 20 � 25 and 25 (constant).

Figure 7: RMSE (�̂) vsp for the Poisson parameters being cho-
sen randomly and with the structure imposed by the Equa-
tion 6.1. � = 15 and Ci j = 30 for all i and j.

For completeness, we observe the same e�ects if we allow the
scaling constants to vary randomly for each store i and time j . �e
larger the variation among the scaling constants, the less structure
there is to exploit, and that leads to worse estimates.

6.5 �e e�ect of structure
�e premise of our work is that the imposition of some structure al-
lows us to estimate the true demand parameters be�er. We con�rm
that by comparing the case of allowing the parameters, �i j , to be
chosen randomly to the case of choosing �i j in manner outlined in
Equation 6.1. Figure 7 con�rms that our premise is sound by demon-
strating that the imposition of structure allows be�er estimation of
the true parameters.

7 A CASE STUDY: WALMART
A�er extensive simulated experiments, we turn our a�ention to
a real-world dataset. Our goal is to use actual sales data from
several stores across time for a product or type of products and
learn the true parameters of demand for each location and instance
of time. To that end, we use the Walmart sales data made available
by Kaggle [1]. �e dataset provides sales data for 45 stores located
across di�erent geographical regions. Each store provides weekly

sales data for up to 100 departments for 143 weeks (Feb 5, 2010 - Oct
26, 2012). As such, consider the sales data for each department to
be a 45 x 143 matrix of observations. Several department matrices
have missing data/information.
As is typical for real-world se�ings, we are unaware of the true
demand generating distributions and stocking levels at each store
location and instance of time. �is information is not provided with
the dataset either. �erefore, we have no de�nitive way to evalu-
ate how our approach performs in determining the true demand
function parameters. To this end, we make certain assumptions
and adopt heuristics to determine the value of this exercise.

7.1 Modeling Assumptions
For a given department, we have a 45 x 143matrix of observations,Y .
For simplicity, we �rstly assume that there is li�le to no censoring,
i.e. Ci j >> Yi j for all i, j. We relax this condition later to study
the impacts of induced (arti�cial) censoring. We let the scaling
constant � = Ymax. Note that we assume Yi j ⇠ Poisson(�i j ). We
choose a probability of observation, p 2 (0,1], which results in an
observation matrix Xp . �is allows us to learn the parameters �i j
as detailed in Section 3.

7.2 Learning parameters via De-noising
We use the observation matrix, Xp , from the Walmart sales dataset
to determine the parameters of the Poisson distributions, Yi j . As
mentioned earlier, we do not know whether the true demand distri-
butions are Poisson. However, we use our estimates �̂i j to evaluate
the error between them and the actual demand observations, Yi j .
Figure 8 shows the RMSE between the estimated means, �̂i j and
the actual observations Yi j . We vary the independent observation
probability (horizontal axis) to see the e�ect on the RMSE.�e plot
shows the RMSE computed across all the entries of the matrix and
also just for the hidden entries. It is clear that RMSE values are
lower as p gets higher. Given that the RMSE values are similar for
both the entire matrix and for the values that were hidden, there
appears to be structure in the data which has been exploited by
our method. We call this property a de-noising e�ect because on
average our estimated means of the true demand are not too far o�
from the observations, on average.

7.3 Transformed Distribution of Observations:
Gaussian

�us far, we have established that our approach allows us to ap-
proximate the de-noising of the data observations reasonably well,
on average. However, we do not know the true demand distribu-
tions. �erefore, one natural question is to evaluate how valid our
model assumption about the demand being a matrix of independent
Poisson variables with means �i j really is. To that end, we use
the bootstrap method to generate the distribution of the following
random variable:

W =

1
|S|
P
i j2S

(Yi j� ˆ�i j )
r

1
( |S|)2

P
i j2S

ˆ�i j

where S is a random sample of the indices of observation matrix Y
and the estimated mean matrix �̂.
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Figure 8: For the Walmart sales data across 45 stores and
143 weeks. Department = 79. �e plot shows RMSE(�̂) vs
observation probability, p. �e RMSE is obtained between
the estimated �̂i j and the original observaionsY . We assume
little to no-censoring. �e plot is showing RMSE values for
the entire matrix �̂ and also for only those values that were
hidden (due to our choice of p).

Figure 9: For the Walmart sales data across 45 stores and
143 weeks. Department = 79. �e histogram on the le� is
generated by random sampling from the randomvariableW.
�e matrices are sampled at random with an independent
probability of selection, i.e. p < 1. On the the right is a QQ-
plot of the distribution of W against a Normal distribution
withmean being themean of the samples ofW and standard
deviation of the samples ofW.

If the entries in the matrix Y are indeed independent Poissons, we
expect W to be Normally distributed because for a Poisson ran-
dom variable with mean �, the variance is also �. Figure 9 shows
that the histogram and the QQ-plot both show an approximately
Normal distribution ofW. Both plots con�rm a center to the right
of 0 which suggests that there is some censoring in the dataset
(see Section 7.4). �e QQ-plot shows that the data points lie on
the red straight line which con�rms Normality with reference to
a Gaussian distribution with mean equal to the sample mean and
standard deviation equation to the sample mean’s standard devi-
ation. Remarkably, this appears to suggest that our assumption
about the data being distributed as independent Poisson random
variables is the valid for this dataset.

Figure 10: For the Walmart sales data across 45 stores and
143 weeks. Department = 79. �e plot shows the compari-
son between the average of observations matrix and the av-
erage of the estimated means. We assume no censoring. �e
observation probability, p, is varied (horizontal axis).

7.4 Estimated parameters as Lower bounds
Notice that while Figure 8 shows the RMSE decaying, it doesn’t
reach zero. We notice that the estimated parameters, �̂i j , tend to be
lower-bounds of the observations. Figure 10 shows this behavior
via a comparison of the average of observations, 1

NT
P
i,j

Yi j , and

the average of the estimated means, 1
NT
P
i,j

�̂i j . �is plot con�rms

the �ndings in the RMSE plot in Figure 8 where the average of the
estimated means approaches the average of the observations as p
increases. However, the estimated averages are always a lower-
bound on the averages of the observations. We �nd that this lower-
bound behavior holds across all departments in theWalmart dataset.
�is �nding is useful because it hints at the utility of this approach
in planning exercises for retailers where conservative estimates
of the demand functions can be made by following the approach
introduced in this paper. Note also that the estimates could be
improved with knowledge of the actual stock levels, Ci j , which
were assumed to be practically in�nite in this series of experiments.

7.5 Induced Censoring
Given that we have established that our assumption about the de-
mand data being Poisson is reasonable for theWalmart data, we next
investigate whether the original data parameters can be learned
a�er some induced arti�cial censoring. We censor the observations
by choosing a stocking level, Ci j , which is not as large as the one
chosen in the experiments described earlier. Eventually, we learn
the parameters �̂i j as estimates of the true demand distributions.
We choose mild and signi�cant censoring. For the mild censoring
situation we set Ci j = 0.4� and signi�cant censoring where we
set Ci j = 0.2� . Note that � = maxi .j Yi j . �e stocking levels,
Ci j , are all set to the same value within each experiment. We
note that the mild censoring situation ends up censoring about
30% of the entries in the original Walmart dataset, department
79. In the signi�cant censoring case we notice about 66% of the
entries experiencing censoring. Figures 11 (mild-censoring) and 12
(signi�cant censoring) show the plots obtained for RMSE (�̂) with
reference to the Walmart data observations. Compare these plots
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Figure 11: Mild induced censoring. For the Walmart sales
data across 45 stores and 143 weeks. Department = 79. �e
plot shows RMSE(�̂) vs p. �e RMSE is obtained between the
estimated �̂ and the original observations Y . We keep Ci j =
0.4� for all i, j. �e plots show the RMSE values for the entire
matrix �̂ and also for only those values that were hidden
(due to our choice of p).

Figure 12: Signi�cant induced censoring. For the Walmart
sales data across 45 stores and 143 weeks. Department = 79.
�e plot shows RMSE(�̂) vs p. �e RMSE is obtained between
the estimated �̂ and the original observations Y . We keep
Ci j = 0.1�i j for all i, j. �e plots show the RMSE values for
the entire matrix �̂ and also for only those values that were
hidden (due to our choice of p).

to Figure 8, while noticing the scale di�erences on the vertical axis,
which shows the same plots for the situation with no censoring. As
the amount of (induced) censoring is increased the RMSE values
increase con�rming our intuition from the simulated experiments
that the estimates get worse with censoring.

8 DISCUSSION
Estimation of true demand parameters from noisy, incomplete and
censored sales data is a problem of signi�cant interest. We present
a scalable approach to estimating the true demand parameters from
a single sample of a matrix of observations across N stores and forT
time periods. We assume that the demand at each location and time
period is distributed as a Poisson random variable. �e parameter
(mean) of the demand at each location and period is allowed to be
di�erent, but we assume that each demand variable is independent
of all others. We then present an algorithm to estimate the true

parameters from a matrix of observations that could be incomplete
and where the individual observations are censored. As such, our
approach can be applied to distributions other than Poisson as long
as the setup assumes independence. We show that our estimates
for the censored means and the true demand parameters are con-
sistent, i.e. the average expectedMSE ! 0 as N ,T ! 1. Further,
we show that as the degree of censoring increases the estimates
become poorer and establish this analytically and with the help
of simulations. Finally, we conduct a series of experiments on a
real-world dataset with Walmart’s sales data and conclude that our
approach has great practical value.
It is worth discussing the relationship of our proposed framework
with existing popular time series model. A popular time series mod-
eling approach a�empts to capture three things: (a) stationarity,
(b) periodicity and (c) trend. Popular stationary models include the
Auto Regressive (AR) model; popular periodicity models include the
�nite frequency model; and a popular trend model is �nite degree
polynomials. It can easily be argued that all of these (and their
linear combinations) are special instances of our framework. Some
details towards this are as follows.

Auto-Regressive (AR) and Linear Dynamical System. �e Auto re-
gressive model with parameter p, obeys the invariant that the value
at time t , Xt , is given by Xt =

Pp
k=1 �kXt�k + c + �, where � is

white noise; let constant c = 0 for simplicity. �en it follows that
E[Xt ] = �T E[X t�1

t�p ] where � = [�1 . . . �p ] and Xb
a = [Xa . . .Xb ].

�is is e�ectively the relationship that will be obeyed by a Linear
Dynamical System as well. We have that E[Xt ] is a linear function
of X0, model parameters � and t (assuming X�1�p = 0). Modeling
� = (X0,� ) as store feature, � = t as time feature, it follows that
E[Xt ] = h(� ,�) with h being a nice function, as discussed earlier
in this work.

Periodicity. A popular, parsimonious model inspired by Fourier
Transformation is the �nite-frequency model where the time se-
ries value at time t is Xt =

PK
k=1 �k exp

⇣
� 2�i fk t

⌘
+ �, with fk

denoting frequencies, �k denoting their signi�cance and � being
white noise. Again, if we model � = (�k , fk ) kK as store feature
and � = t as time feature, we immediately obtain E[Xt ] = h(� ,�)
with h being a nice function.

Trend. Trendmodels are e�ectively like the periodicity model where
the basis is not Fourier but �nite degree polynomials. �erefore, for
reasons similar to those for Periodicity, it follows that such models
also belong to our framework as a special case.
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